Developer Resources
Everything you need to start building decentralized AI applications with PYRAI.
Resources
Documentation
Comprehensive guides and API references
Code Examples
Sample projects and code snippets
Tutorials
Step-by-step guides for building on PYRAI
Video Guides
Visual walkthroughs and explanations
SDK Downloads
Official PYRAI SDKs for various languages
Community Forum
Connect with other PYRAI developers
Quick Start Example
import pyrai
# Initialize PYRAI client
client = pyrai.Client(api_key="YOUR_API_KEY")
# Define a simple neural network model
model = pyrai.models.Sequential([
pyrai.layers.Dense(64, activation='relu', input_shape=(10,)),
pyrai.layers.Dense(32, activation='relu'),
pyrai.layers.Dense(1, activation='sigmoid')
])
# Compile the model
model.compile(optimizer='adam', loss='binary_crossentropy')
# Train the model on the decentralized network
model.fit(x_train, y_train, epochs=10, batch_size=32)
# Make predictions
predictions = model.predict(x_test)
# Save the model to PYRAI's decentralized storage
model.save('my_model.h5')
# Load the model from PYRAI's decentralized storage
loaded_model = pyrai.models.load_model('my_model.h5')
Online Demo
Python Editor
Output Console
> Run the code to see output